2013 | 2012 | 2011 | 2010 | 2008-2006 | 2005 | 2004 | 2003 | 2002 | 2001-1998

§ denotes corresponding/co-corresponding authorship


Higgins CD, Koellhoffer JF, Chandran K, Lai JR§. 2013. C-Peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: Effects of conjugation to cholesterol and side chain-side chain crosslinking. Bioorg Med Chem Lett In press.

Lima H Jr, Jacobson LS, Goldberg MF, Chandran K, Diaz-Griffero F, Lisanti MP, Brojatsch J§. 2013. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle 12:1868-1878. (pdf)

Regula LK, Harris R, Wang F, Higgins CD, Koellhoffer JF, Zhao Y, Chandran K, Gao J, Girvin ME, Lai JR§. 2013. Conformational properties of peptides corresponding to the ebolavirus GP2 membrane-proximal external region in the presence of micelle-forming surfactants and lipids. Biochemistry 52:3393-3404. (pdf)

Kuhn JH§, et al. 2013. Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Arch Virol 158:1425-1432. (pdf)

Martinez O, Ndungo E, Tantral L, Miller EH, Leung LW, Chandran K, Basler CF§. 2013. A mutation in the Ebola virus envelope glycoprotein restricts viral entry in a host species and cell-type specific manner. J Virol 87:3324-3334. (pdf)

Bhattacharyya S, Mulherkar N, Chandran K§. 2013. Endocytic pathways involved in filovirus entry: advances, implications and future directions. Viruses 4:3647-3664.

Jacobson LS, Lima H, Goldberg MF, Gocheva V, Tsiperson V, Sutterwala FS, Joyce JA, Gapp BV, Blomen VA, Chandran K, Brummelkamp TR, Diaz-Griffero F, Brojatsch§. 2012. Cathepsin-mediated necrosis controls the adaptive immune response by Th2-associated adjuvants. J Biol Chem 288:7481-7491. (pdf)


Krishnan A, Miller EH, Herbert AS, Ng M, Ndungo E, Whelan SP, Dye JM, Chandran K§. 2012. NPC1/NPC1-like1 Chimeras Define Sequences Critical for NPC1’s Function as a Filovirus Entry Receptor. Viruses 4:2471-2484. (pdf)

Koellhoffer JF, Chen G, Sandesara RG, Bale S, Saphire EO, Chandran K§, Sidhu SS§, Lai JR§. 2012. Two synthetic antibodies that recognize and neutralize distinct proteolytic forms of the Ebola virus envelope glycoprotein. Chembiochem 13:2549-2557. (pdf)

Koellhoffer JF, Malashkevich VN, Harrison JS, Toro R, Bhosle RC, Chandran K, Almo SC, Lai JR§. 2012. Crystal Structure of the Marburg virus GP2 core domain in its postfusion conformation. Biochemistry 51:7665-7675. (pdf)

Kuhn JH§, et al. 2012. Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Arch Virol 158:301-311. (pdf)

Bale S, Dias JM, Fusco ML, Hashiguchi T, Wong AC, Liu T, Keuhne AI, Li S, Woods VL Jr, Chandran K, Dye JM, Saphire EO§. 2012. Structural basis for differential neutralization of ebolaviruses. Viruses 4:447-470. (pdf)

Miller EH and Chandran K§. 2012. Filovirus entry into cells – new insights. Curr Opin Virol 2:206-214. (pdf)

Miller EH, Obernosterer G, Raaben M, Herbert AS, Krishnan A, Ndungo E, Sandesara RG, Carette JE, Kuehne AI, Ruthel G, Dye JM§, Whelan SP§, Brummelkamp TR§, Chandran K§. 2012. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J 31:1947-1960. (pdf)

Harrison JS, Koellhoffer JF, Chandran K, Lai JR§. 2012. Marburg Virus Glycoprotein GP2: pH-Dependent Stability of the Ectodomain Alpha-Helical Bundle. Biochemistry 51:2515-2525. (pdf)

Misasi J, Chandran K§, Yang JY, Considine B, Sullivan NJ, Filone CM, Hensley LE, Cunningham J§. Filoviruses require endosomal cysteine proteases for entry but display distinct protease preferences. J Virol 86:3284-3292. (pdf)


Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM§, Whelan SP§, Chandran K§, Brummelkamp TR§. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477:340-343. (pdf)

Côté M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J§. Small molecule inhibitors reveal Niemann-Pick C1 is essential for ebolavirus infection. Nature 477:344-348. (pdf)

Dias JM, Kuehne AI, Abelson DM, Wong AC, Halfmann P, Muhammad M, Kang E, Zak S, Fusco ML, Kawaoka Y, Chandran K, Dye JM§, Saphire EO§. A shared immunological solution for neutralization of ebolaviruses. Nature Struct. Mol. Biol. 18:1424-1427. (pdf) (Supplementary material)

Mulherkar N, Raaben M, de la Torre JC, Whelan SP, Chandran K§. The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway. Virology 419:72-83. (pdf)

Martinez M, Tantral L, Mulherkar N, Chandran K, Basler CF§. Impact of Ebola mucin-like domain on antiglycoprotein antibody responses induced by Ebola virus-like particles. J. Infect. Dis. 204: S825. (pdf)

Harrison JS, Higgins CD, Chandran K, Lai JR§. Designed protein mimics of the Ebola virus glycoprotein GP2 alpha-helical bundle: Stability and pH effects. Protein Sci. 20:1587-1596. (pdf)

Miller EH, Harrison JS, Radoshitzky SR, Higgins CD, Chi X, Dong L, Kuhn JH, Bavari S, Lai JR§, Chandran K§. Inhibition of Ebola virus entry by a C-peptide targeted to endosomes. J. Biol. Chem. 286:15854-15861. (pdf)


Wong AC, Sandesara RG, Mulherkar N, Whelan SP, Chandran K§. A forward genetic strategy reveals destabilizing mutations in the ebolavirus glycoprotein that alter its protease dependence during cell entry. J. Virol. 84:163-75. (pdf) (Supplementary material)


Ivanovic T, Agosto MA, Zhang L, Chandran K, Harrison SC, Nibert ML§. Peptides released from reovirus outer capsid form membrane pores that recruit virus particles. EMBO J. 27:1289-1298. (pdf)

Ivanovic, T, Agosto, MA, Chandran, K, Nibert ML§. A role for molecular chaperone Hsc70 in reovirus outer-capsid disassembly. J. Biol. Chem. 282:12210-12219. (pdf)

Zhang L, Chandran K, Nibert ML, Harrison SC§. Reovirus mu1 structural rearrangements that mediate membrane penetration. J. Virol. 24:12367-12376. (pdf)

Coffey CM, Sheh A, Kim IS, Chandran K, Nibert ML§, Parker JS§. Reovirus outer capsid protein mu1 induces apoptosis and associates with lipid droplets, endoplasmic reticulum, and mitochondria. J. Virol. 80:8422-8438. (pdf)


Chandran K, Sullivan, NJ, Felbor, U, Whelan, SP, Cunningham, JM§. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308:1643-1645. (pdf) (Supplementary material)

Nibert ML§, Odegard AL, Agosto MA, Chandran K, Schiff LA. Putative autocleavage of reovirus mu1 protein in concert with outer-capsid disassembly and activation for membrane permeabilization. J. Mol. Biol. 345:461-474. (pdf)


Ehrlich M, Boll W, Van Oijen A, Hariharan R, Chandran K, Nibert ML, Kirchhausen T§. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118:591-605. (pdf)

Odegard AL, Chandran K, Zhang X, Parker JS, Baker TS, Nibert ML§. Putative autocleavage of outer capsid protein micro1, allowing release of myristoylated peptide mu1N during particle uncoating, is critical for cell entry by reovirus. J. Virol. 78:8732-8745. (pdf)

Hutchings AB, Helander A, Silvey KJ, Chandran K, Lucas WT, Nibert ML, Neutra MR§. Secretory immunoglobulin A antibodies against the sigma1 outer capsid protein of reovirus type 1 Lang prevent infection of mouse Peyer's patches. J. Virol. 78:947-957. (pdf)


Chandran K, Parker JS, Ehrlich M, Kirchhausen T, Nibert ML§. The delta region of outer-capsid protein mu1 undergoes conformational change and release from reovirus particles during cell entry. J. Virol. 77:13361-13375. (pdf)

Chandran K, Nibert ML§. Animal cell invasion by a large nonenveloped virus: reovirus delivers the goods. Trends Microbiol. 11:374-382. Review. (pdf)

Helander A, Silvey KJ, Mantis NJ, Hutchings AB, Chandran K, Lucas WT, Nibert ML, Neutra MR§. The viral sigma1 protein and glycoconjugates containing alpha2-3-linked sialic acid are involved in type 1 reovirus adherence to M cell apical surfaces. J. Virol. 77:7964-7977. (pdf)

Odegard AL, Chandran K, Liemann S, Harrison SC, Nibert ML§. Disulfide bonding among mu1 trimers in mammalian reovirus outer capsid: a late and reversible step in virion morphogenesis. J. Virol. 77:5389-5400. (pdf)


Chandran K, Farsetta DL, Nibert ML§. Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein mu1 mediates membrane disruption. J. Virol. 76:9920-9933. (pdf)

Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC§. Structure of the reovirus membrane-penetration protein, mu1, in a complex with is protector protein, sigma3. Cell 108:283-295. (pdf)

Middleton JK, Severson TF, Chandran K, Gillian AL, Yin J, Nibert ML§. Thermostability of reovirus disassembly intermediates (ISVPs) correlates with genetic, biochemical, and thermodynamic properties of major surface protein mu1. J. Virol. 76:1051-1061. (pdf)


Chandran K, Zhang X, Olson NH, Walker SB, Chappell JD, Dermody TS, Baker TS, Nibert ML§. 2001. Complete in vitro assembly of the reovirus outer capsid produces highly infectious particles suitable for genetic studies of the receptor-binding protein. J. Virol. 75:5335-5342. (pdf)

Farsetta DL, Chandran K, Nibert ML§. 2000. Transcriptional activities of reovirus RNA polymerase in recoated cores. Initiation and elongation are regulated by separate mechanisms. J. Biol. Chem. 275:39693-39701. (pdf)

Chandran K, Walker SB, Chen Y, Contreras CM, Schiff LA, Baker TS, Nibert ML§. 1999. In vitro recoating of reovirus cores with baculovirus-expressed outer-capsid proteins mu1 and sigma3. J. Virol. 73:3941-3950. (pdf)

Chandran K, Nibert ML§. 1998. Protease cleavage of reovirus capsid protein mu1/mu1C is blocked by alkyl sulfate detergents, yielding a new type of infectious subvirion particle. J. Virol. 72:467-475. (pdf)