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Abstract: Detailed knowledge of the host-virus interactions that accompany filovirus entry 

into cells is expected to identify determinants of viral virulence and host range, and to yield 

targets for the development of antiviral therapeutics. While it is generally agreed that 

filovirus entry into the host cytoplasm requires viral internalization into acidic endosomal 

compartments and proteolytic cleavage of the envelope glycoprotein by endo/lysosomal 

cysteine proteases, our understanding of the specific endocytic pathways co-opted by 

filoviruses remains limited. This review addresses the current knowledge on cellular 

endocytic pathways implicated in filovirus entry, highlights the consensus as well as 

controversies, and discusses important remaining questions. 
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1. Architecture of Filovirus Virions and the Viral Glycoprotein, GP 

Members of the family Filoviridae (filoviruses) are non-segmented negative-strand RNA viruses 

that produce filamentous enveloped virions. Filoviruses belong to one of three serologically, 

biochemically and genetically distinct genera—Ebolavirus, Marburgvirus, and “Cuevavirus” 
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(tentative) [1,2]. Three ebolaviruses (Bundibugyo virus [BDBV], Ebola virus [EBOV], Sudan virus 

[SUDV]) and one marburgvirus (Marburg virus [MARV]) are associated with outbreaks of highly 

lethal hemorrhagic fever for which no approved vaccines and treatments are available (see [3,4] for 

recent reviews). 

Filovirus virions are filamentous particles with a uniform diameter (~90 nm) but somewhat variable 

length (900–1,000 nm) and pleomorphic overall appearance [5,6]. These virions contain a single 

virus-encoded membrane glycoprotein, GP, which is organized into homotrimeric spikes on the viral 

surface (see [7–9] for recent reviews). GP is necessary and sufficient to mediate viral entry into 

target cells.  

EBOV GP is encoded by two overlapping open-reading frames (ORF). The default polypeptide 

product of the GP gene is sGP, a small secreted glycoprotein of unknown function [10]. Expression of 

the full-length GP precursor requires the insertion of a non-templated adenosine residue by 

transcriptional RNA editing [11]. By contrast, MARV GP is encoded by a single ORF, and no sGP 

equivalent is produced [12]. The GP precursor is post-translationally cleaved by the pro-protein 

convertase furin within the Golgi compartment of virus-producer cells, yielding two disulfide-linked 

subunits, GP1 and GP2 [13]. The membrane-distal GP1 subunit binds to cellular receptors and controls 

the conformation of the GP2 transmembrane subunit. GP2 catalyzes fusion between viral and cellular 

membranes. GP1 contains a highly conserved N-terminal receptor-binding sequence and more variable 

C-terminal sequences, including an extensively glycosylated mucin-like domain. The GP2 subunit 

comprises an N-terminal internal fusion loop, N-terminal and C-terminal heptad repeat sequences 

whose refolding drives membrane fusion (see below), a transmembrane domain, and a short cytoplasmic 

tail (see [7–9] for recent reviews).  

2. Role of Acid pH and Endo/Lysosomal Host Factors in Filovirus Entry  

Filoviruses are known to enter host cells via acid pH-dependent endocytic pathways [14–16]. Viral 

particles containing EBOV GP were shown to require Rab7 for entry [17] and co-localize with  

Rab7-positive endosomes following viral internalization [18,19]. MARV is also targeted to lysosomes 

after being endocytosed [16]. Within one or more endo/lysosomal compartments, host endosomal 

cysteine proteases (cysteine cathepsins) cleave GP1 to remove its variable C-terminal sequences, 

generating an entry intermediate comprising an N-terminal GP1 fragment and GP2 [20–23]. Recent 

work indicates that a cleaved form of GP must then engage Niemann-Pick C1 (NPC1), an 

endo/lysosomal cholesterol transporter that serves as a critical intracellular receptor for filovirus 

entry [19,24,25]. Additional undefined events downstream of GP-NPC1 binding are proposed to 

trigger the induction of GP conformational changes, including insertion of the GP2 fusion loop into the 

host membrane, and GP2 refolding into a ‘six-helix bundle’ configuration in which the C-terminal 

heptad repeats pack against grooves in a trimeric α-helical coiled-coil formed by the N-terminal heptad 

repeats [26–30]. These GP rearrangements are proposed to drive membrane merger and release of the 

viral nucleocapsid core into the cytoplasm. In addition to GP1 proteolytic cleavage [20], multiple steps 

in the GP2-mediated viral membrane fusion reaction may require endo/lysosomal acid pH [31–34]. 

Therefore, current findings indicate that filovirus particles must traffic to, and possibly enter the 

cytoplasm from, late endosomal and/or lysosomal compartments.  
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The remainder of this article will focus on the upstream endocytic trafficking pathways that deliver 

viruses in general, and filoviruses in particular, to the intracellular sites where viral membrane fusion 

or penetration can occur. 

3. Cellular Endocytic Pathways Implicated in Viral Entry 

Cellular endosomes are pleomorphic structures, which fuse with one another for cargo trafficking. 

Cellular signaling pathways, as well as signals on the internalized receptors regulate sorting and 

trafficking of viruses after internalization. The major cellular endocytic pathways involved in entry of 

viruses into target cells include clathrin-mediated endocytosis, uptake by caveolae, macropinocytosis 

and phagocytosis. Several clathrin- and caveolae-independent endocytic pathways have also been 

reported [35,36], but they are not completely understood. 

3.1. Clathrin-Mediated Endocytosis 

Clathrin-mediated endocytosis is the most widely studied endocytic pathway and is used by several 

viruses for entry into target cells [37–39]. Viral entry via clathrin-mediated endocytosis involves the 

localization of viruses in clathrin-coated pits, which invaginate and are pinched off by dynamin. The 

pits then form endocytic vesicles, which fuse with early endosomes and travel further into the 

cytoplasm. Clathrin dissociates from these vesicles and remains in the cytoplasm until it is recruited to 

line newly formed pits. 

Several cellular factors participate in and regulate various steps of the clathrin-mediated endocytic 

pathway. These include the coat protein clathrin, which assembles into a polyhedral lattice on the inner 

surface of the plasma membrane to form the coated pit. The PICALM protein promotes the assembly 

of clathrin triskelia into cages [40]. The HIP1 protein localizes with clathrin at the plasma membrane 

and is involved in the formation of the coated vesicle [41,42]. HIP1 can also bind to the adaptor 

protein AP-2 [43] (see below). LDLRAP1, which interacts with the cytoplasmic tail of the low density 

lipoprotein (LDL) receptor, can bind to both clathrin and AP-2 [44].  

The adaptor proteins involved in the clathrin pathway initiate vesicle formation by bringing cargo 

molecules to the clathrin coat [45,46]. These include AP-2, which links the clathrin lattice to the cell 

membrane [47]; β-arrestins, which can bind to clathrin directly [48]; DAB2, which can sort the LDL 

receptor independently of AP-2 and LDLRAP1 [49]; and Eps15, which constitutively associates with 

AP-2 during clathrin-mediated endocytosis [37]. Interestingly, anthrax toxin is known to enter cells via 

an Eps15-, AP-2- and DAB2-independent clathrin pathway that requires AP-1 and β-arrestin [40].  

In addition to Eps15, several other proteins are known to possess Eps homology (EH) domains such 

as Epsin 1, Intersectin 1 (ITSN1), REPS1 and REPS2 [50–52]. Epsin 1 is involved in clathrin-mediated 

endocytosis of influenza A virus [53], whose entry was previously reported to be AP-2 independent [54]. 

Epsin 1 binds to both ITSN1 [55] and Eps15 [53] through the same EH-domain binding sequence and 

therefore, simultaneous binding of Eps15 and ITSN1 is unlikely, suggesting that Epsin 1 and ITSN1 

may act as alternate adaptors to substitute for the respective functions of AP-2 and Eps15 in the 

clathrin pathway. The EH domains of ITSN bind to epsin [55], while the Src homology 3 (SH3) 

domains bind to dynamin and synaptojanin [56]. Another adaptor protein NUMB, can bind to the α-

adaptin subunit of AP-2 [57] and Eps15 [58].  
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Some of the regulatory proteins involved in the clathrin pathway include INPPL1, which  

recruits ITSN1 to clathrin-coated pits on the plasma membrane [59]. RalBP1/RLIP76, a Rac/Cdc42 

guanine-nucleotide activating protein, targets the AP-2 complex and regulates endocytosis [60]. 

REPS1 and REPS2 proteins associate with RalBP1 and act as molecular switches to coordinate the 

actions of the RalBP1-interacting Ral-GTPases [61]. Also, REPS1 forms complexes with two adaptor 

proteins Crk and Grb2 [61], while REPS2 can bind directly to epsin through its EH domain [62].  

The scission of the clathrin-coated pits is carried out by the GTPase dynamin 2 (DYN-2), which 

assembles at the neck of the coated pits and functions as a constrictase to pinch off the pits [63]. BAR 

domain proteins such as amphiphysin and SNX9 are recruited to the sites of clathrin assembly where 

they induce membrane curvature, interact with actin and synaptojanin, and promote the recruitment of 

dynamin [64,65].  

Taken together, these studies demonstrate that numerous cellular factors with overlapping functions 

participate in and regulate the clathrin pathway. Given the complexity of this pathway and the 

variations in the composition of individual clathrin pits, it would be interesting to examine how 

different viruses dictate the recruitment of specific adaptors and regulators to a clathrin pit. 

3.2. Caveolae-Mediated Endocytosis  

Caveolae-mediated endocytosis involves the formation of small flask-shaped invaginations of the 

plasma membrane [66]. Unlike the clathrin pathway, caveolae-mediated endocytosis is usually not a 

constitutive process and predominantly occurs upon cell stimulation [67,68]. 

Caveolae are a specialized form of lipid rafts primarily composed of cholesterol and 

sphingolipids [69]. The shape and structure of caveolae is determined by caveolin, a protein that binds 

cholesterol and self associates to form a striated coat on the surface of the invaginations [70]. The 

cavin proteins are known to regulate caveolae structure [71]. PTRF-cavin binds to caveolin and 

stabilizes the membrane curvature to produce the characteristic flask shape of caveolae [69]. 

Several regulatory factors are known to be involved in various steps of the caveolae pathway. These 

include Cdc42 and RhoA, which facilitate caveolae formation by promoting actin polymerization 

and binding to caveolin 1 [72]; tyrosine kinases and phosphatases, which trigger downstream signaling 

pathways after cargo binding; integrins, which regulate trafficking of caveolae; and protein kinase C 

(PKC), which stimulates uptake by caveolae [73,74]. 

Dynamin can directly bind to caveolin [75] and is suggested to act as a scission factor by triggering 

fission of the caveolae [76]. Intersectin 2 localizes at the neck of the caveolae and regulates the activity 

of dynamin. An adaptor protein, NOSTRIN, recruits dynamin to the caveolae [69]. 

Phosphorylation of caveolin 1 by Src leads to caveolar internalization. The cytoskeletal components 

associated with the caveolae pathway include actin, filamin and microtubules, which facilitate 

formation as well as internalization of caveolae [69,74]. 

Upon internalization, caveolae form characteristic grape-like, multi-caveolar complexes of 

heterogeneous morphology known as caveosomes. Rab 5 regulates the fusion of caveosomes with 

early endosomes. The endosomal route taken by different ligands internalized by the caveolae pathway 

is regulated by various Rabs, kinases and phosphatases [69]. 
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Viruses such as SV40 enter through caveolae [77] which are approximately 60 nm in size [66]. 

Since filoviruses have also been reported to enter via caveolae-mediated endocytosis [78,79], it is 

conceivable that caveolae can adapt to fit the size of their cargo. 

Several sterol-binding chemicals such as methyl-β-cyclodextrin and filipin can block 

caveolae-mediated endocytosis [80,81] but their inhibitory effects are not restricted to the caveolar 

pathway alone [82].  

3.3. Macropinocytosis  

Macropinocytosis is a transient actin-dependent endocytic process that is typically employed for 

cellular uptake of fluids and large solutes via large (0.5–10 µm diameter) irregular-shaped vacuoles  

or macropinosomes.  

Macropinocytosis is generally initiated by external stimuli (growth factor-mediated) resulting in the 

formation of actin-driven cellular protrusions called membrane ruffles that can fuse to form 

macropinosomes. Rho family GTPases (Rac1, Cdc42) and p21-activated kinase (Pak1) are known 

important mediators of ruffle formation in addition to Na
+
 influx and H

+
 efflux. Membrane ruffles also 

contain several regulators of actin polymerization, disassembly, stabilization and cytoskeletal 

membrane attachment such as Arp2/3, VASP, WAVE, PKC and several classes of myosins, all of 

which are known to play a role in ruffle extension and macropinosome formation [83,84].  

Several adaptors and regulators have been reported to be involved in macropinocytosis. These 

include the adaptor complex-1 (AP-1), which is required for macropinosome formation [85], Abi1 [86], 

TBC1D3 [87], c-Cbl [88] and NHE1 which is required to achieve the necessary H
+
 concentration to 

promote actin polymerization during macropinocytosis [89]. Other cellular factors involved in this 

pathway include epidermal growth factor (EGF) receptor, phosphatidylinositol (PI) 3-kinase (PI3K), 

Phospholipase C (PLC), the ARF-family of GTPases, and CtBP1 (carboxyl-terminus binding protein 1), 

which is associated with macropinosome closure [83].  

Several viruses are known to enter via macropinocytosis and distinct cellular factors have been 

shown to be capable of inducing macropinocytosis of these virus particles. For example, human 

adenovirus serotype 3 requires alpha v integrins [90], vaccinia virus uses phosphatidyl serine exposed 

on its surface to induce its uptake via macropinocytosis [91,92], Kaposi's sarcoma-associated 

herpesvirus requires the adaptor protein c-Cbl and myosin IIA [88,93], coxsackievirus requires 

occludin and Rab34 [94] and Nipah virus induces macropinocytosis via a signaling cascade involving 

Rac1 and Cdc42 [95].  

Several chemical agents such as dimethyl amiloride [96], cytochalasin D and PI3K inhibitors [97] 

have been shown to block macropinocytosis but they are not specific inhibitors of this pathway [82]. 

3.4. Phagocytosis 

Phagocytosis is a receptor-mediated form of endocytosis that includes a number of closely related 

yet distinct mechanisms. It is carried out by specialized cells such as neutrophils, monocytes and 

macrophages and is typically used by cells to clear large pathogens and debris. Like macropinocytosis, 

phagocytosis is also associated with actin-dependence, large vacuole size and cellular factors 

such as RhoA, Cdc42, Rac-1 and PI3K. However, unlike macropinocytosis, phagocytosis involves 
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cargo-specific receptor interactions resulting in a signaling cascade that triggers cytoskeletal 

rearrangements. This causes formation of cell surface extensions that specifically zipper up around the 

cargo and form a cargo-sized vacuole called the phagosome [66]. Dynamin-2 has been reported to be 

required for the closure of phagosomes whereas macropinosome closure is associated with CtBP1 [98]. 

Several adaptor proteins are involved in phagocytosis, which include Syk, Grb2, Gab2, and CrkII. 

Lipids are also actively involved in phagocytosis and anionic phospholipids such as phosphatidyl 

serine and phosphoinositides are known to make the inner leaflet of the plasma membrane negatively 

charged during the early steps of this process [99]. Other cellular factors that are recruited to 

phagosomes include PI3K, Phospholipase D, IQGAP1, amphiphysin1 and adhesion proteins [74]. 

Herpes simplex virus 1 [100] and foot-and-mouth disease virus [79] are known to enter cells via 

phagocytosis. PI3K inhibitors [97] and filamentous actin depolymerizing agents can block 

phagocytosis but their inhibitory effects are not restricted to this pathway [82]. 

3.5. Clathrin- and Caveolae-Independent Endocytic Pathways 

Several clathrin- and caveolae-independent endocytic pathways involving internalization of ligands 

in non-coated vesicles have been reported, including two distinct pathways of lipid transport to the 

Golgi apparatus [101]. The IL-2 receptor is suggested to be a marker for these pathways [102], whose 

entry requires Rac1, Paks, and cortactin [103]. 

Each of these clathrin- and caveolae-independent pathways uses distinct cellular factors for 

internalization. Feline infectious peritonitis virus was shown to enter via a dynamin-dependent 

pathway [104]. Dynamin is also implicated in the entry of coxsackievirus A9 through a pathway that 

requires β2-microglobulin and Arf6 [105]. By contrast, lymphocytic choriomeningitis virus (LCMV) 

entry requires cholesterol but is independent of dynamin, Arf6 and actin [106,107]. Similarly, human 

papillomavirus type 16 entry is also independent of dynamin and Rho GTPases but requires 

tetraspanin-enriched microdomains, PI3K, PKC, and actin [108]  

In addition to these clathrin- and caveolae-independent pathways that are known to be utilized by 

different viruses for entry, several other pathways exist that are not currently associated with viral 

entry. These include the GEEC pathway involved in endocytosis of GPI-anchored proteins [109], the 

flotillin-1-dependent pathway utilized by GPI-anchored proteins and proteoglycans [110], the 

Arf6-dependent pathway used by MHC antigens [111] and the IL-2 pathway, which is utilized for 

internalization of cytokine receptors [74].  

Thus, there are many distinct clathrin- and caveolae-independent pathways that have been partially 

characterized, and perhaps several more that are yet to be uncovered. It would be interesting to explore 

if any of these additional pathways are utilized by viruses for entry.  

4. Cellular Endocytic Pathways Implicated in Filovirus Entry 

The involvement of microtubules, lipid rafts and membrane cholesterol in EBOV entry was 

reported by several groups [112–114]. Caveolae, which are composed of lipid microdomains, were 

also implicated in filovirus entry [78] but this finding was later disputed [115]. However, a more recent 

report has again proposed the involvement of caveolae in filovirus entry [79]. Hence, the role of 

caveolae in filovirus entry remains unclear. 
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Both clathrin-mediated endocytosis [116–118] and macropinocytosis [17,18,118,119] were shown 

to be involved in filovirus entry by several groups. Additionally, some studies have suggested that 

filoviruses concurrently use multiple endocytic pathways for entry, including clathrin- and 

caveolae-mediated endocytosis [78]; clathrin, caveolae and macropinocytic pathways [79]; and 

macropinocytosis and clathrin-mediated endocytosis [118]. It is currently unclear how the use of 

distinct internalization pathways by filoviruses is influenced by viral isolate, cell/tissue type, and type 

of surrogate viral particle employed (native filovirus virions, filamentous virus-like particles (VLPs), 

or retrovirus or VSV pseudotypes). 

4.1. Role of Clathrin Endocytic Pathway in Filovirus Entry 

The average size of a clathrin-coated pit is approximately 120 nm. However Listeria 

monocytogenes, which is usually 2 μm in length, has been shown to enter target cells using the clathrin 

pathway [120]. More recently, Cureton and co-workers showed that bullet-shaped VSV particles 

(~200 nm in length) are internalized through vesicles containing partial clathrin coats, and whose 

formation requires actin polymerization in a cargo size-dependent manner [121,122]. These findings 

led to the premise that clathrin-coated pits adapt to accommodate the size of their cargo and could 

therefore play a role in filovirus entry.  

A study with chemical inhibitors proposed that wild type filoviruses could enter Vero cells by 

clathrin as well as caveolar pathways [123]. However, chemical agents such as chlorpromazine and 

sucrose, which are known to prevent recycling of clathrin to the plasma membrane [124], do not 

specifically block the clathrin pathway and can also inhibit other endocytic pathways [82]. Therefore, 

data obtained using chemical inhibitors must be substantiated with other approaches to establish the 

specificity of target inhibition.  

Using multiple approaches to inhibit several cellular factors involved in the clathrin pathway, 

Bhattacharyya and co-workers showed that retrovirus pseudotypes containing EBOV GP utilized 

clathrin-mediated endocytosis to enter several cell lines, including human endothelial cells [117]. A 

more exhaustive follow-up study revealed a differential requirement for several key cellular 

components of the clathrin pathway in cell entry by retrovirus pseudotypes bearing MARV GP versus 

EBOV GP. Importantly, EBOV GP-mediated entry required Eps15, AP-2 and DAB2, whereas MARV 

GP-mediated entry was independent of these cellular factors and instead requires the adaptor protein 

β-arrestin-1 [116] Subsequent studies have also corroborated the involvement of clathrin-mediated 

endocytosis in EBOV entry in a human glioblastoma cell line using feline immunodeficiency virus 

pseudotyped with EBOV GP [79], and in HeLa cells using EBOV GP VLPs [118].  

The capacity of different types of particles containing filovirus glycoproteins to use 

clathrin-mediated endocytosis for cell entry raises the possibility that the filamentous morphology of 

native filovirus virions is not a critical determinant of the route of viral internalization. A similar 

case has been made for filovirus entry via macropinocytosis (see below) [18,119]. Therefore, a 

systematic examination of the relationship between filovirus particle size and the requirement for 

clathrin-mediated endocytosis, analogous to the studies with VSV, is warranted. 
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4.2. Evidence for Filovirus Entry via Macropinocytosis  

Two studies used the chemical inhibitor EIPA, co-localization with fluid phase markers 

(high-molecular-weight dextrans), and dominant-negative Pak-1 (known to inhibit macropinocytosis), 

to show that EBOV entered Vero cells and HEK-293T cells via a pathway resembling 

macropinocytosis [17,18]. These studies also showed that inhibition of clathrin, caveolin and DYN-2 

did not affect entry of EBOV and morphologically-similar VLPs. Additionally, CtBP1 was shown to 

be important in this process, presumably as a macropinosome closure factor, although its precise role 

remains to be determined [17]. Hunt and coworkers [79] showed that infectious EBOV, VLPs and 

pseudotyped viruses bearing EBOV or MARV GP could use multiple endocytic routes including 

pathways dependent upon clathrin and resembling macropinocytosis to enter a human glioblastoma 

cell line and primary human foreskin fibroblasts, Similar results were shown using VLPs in Vero and 

HeLa cells [118]. Consistent with these findings, Mulherkar and coworkers reported that EBOV enters 

human peripheral monocyte-derived macrophages and Vero cells through a macropinocytosis-like 

pathway [119]. Surprisingly, DYN-2 (generally considered dispensable for macropinocytosis [98]) was 

also found to play an important role in EBOV entry, an observation at odds with two previous 

reports [17,18]. The basis of these apparent differences in DYN-2 utilization during macropinocytic 

uptake of viral particles observed among studies using similar viral reagents and cell lines remains 

unclear and is worthy of further investigation. 

The large size and distinctive filamentous morphology of filovirus particles may provide one 

explanation for why they exploit macropinocytosis-like pathways to enter cells. However, filovirus 

uptake through macropinocytosis was shown to depend on interactions between components of the 

viral envelope and cell surface molecules, and not on viral size/morphology per se [18,119]. Recent 

work suggests that direct interactions between phosphatidylserine (PtdSer) in the outer leaflet of the 

viral membrane and members of two classes of cell-surface receptors can mediate the macropinocytic 

uptake of multiple enveloped viruses in tissue culture [125,126]. Specifically, members of the 

TAM receptor tyrosine kinase family (e.g., Axl, Tyro3) enhance viral uptake and entry via their 

PtdSer-binding ligands Gas6 and Protein S, which bridge the virus particle and TAM [125]. 

PtdSer-binding members of the TIM family are proposed to enhance viral entry by directly binding to 

the viral envelope and inducing particle uptake [126]. Both TAM and TIM proteins enhance filovirus 

entry [127–129], and the former do so by stimulating macropinocytic uptake of virus particles [79]. 

Also using multiple cell lines and primary cells, Axl was shown to facilitate endosomal uptake and 

membrane fusion of EBOV in a cell type-specific manner. Importantly, Axl did not interact directly 

with EBOV GP [130]. Whether filoviruses exploit TAM and TIM proteins through PtdSer binding (as 

seems likely), or through a distinct PtdSer-independent mechanism (see below), remains to 

be explored.  

Current evidence also points to a role for filovirus GP in inducing uptake through 

macropinocytosis: VSV pseudotypes bearing EBOV GP induce plasma membrane ruffling upon 

attachment and are internalized into cells via macropinocytosis; in contrast, VSV pseudotypes bearing 

VSV G are internalized via clathrin-coated vesicles, as shown previously [18,119]. The simplest 

hypothesis to explain this observation is that GP interacts with cell-surface receptors that induce 
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macropinocytosis. These putative internalization receptors may include members of the TIM family. 

The molecular determinants within GP that trigger macropinocytic uptake remain to be defined. 

4.3. Implications of the Involvement of Multiple Endocytic Pathways in Filovirus Entry 

The use of multiple endocytic pathways by filoviruses may influence the outcome of viral infection 

in vivo in several ways, as suggested previously [97,98]. First, viral replication in tissues crucial for the 

development of filovirus disease might require specific pathways of viral internalization that differ 

depending upon the cell type. Second, differential use of endocytic pathways by viral isolates, 

presumably determined by differences in viral interactions with cellular host factors, might contribute 

to strain-specific patterns of filovirus tissue tropism and virulence. Therefore, future studies dissecting 

the interactions between filovirus GP (and other components of the viral envelope) and key 

components of cellular endocytic pathways could prove insightful.  

5. Concluding Remarks 

Recent work on the cell biology of filovirus entry has advanced our understanding of the endocytic 

pathways by which these virus particles are internalized into host cells (Figure 1); however, several 

key questions remain. We believe that future studies should aim to address the following: 

• Which cell-surface components trigger viral internalization, and how does their distribution in cells 

and hosts influence the choice of internalization mechanism (e.g., clathrin versus macropinocytosis)? 

• How do GP and other viral envelope components (e.g., PtdSer) drive viral internalization and 

influence the choice of internalization mechanism? 

• Are the TIM/TAM PtdSer receptors crucial for viral infection in vivo and for pathogenesis?  

• How much PtdSer and other anionic lipids are present in the outer membrane leaflet of the filovirus 

envelope, and how do they get there? Do filoviruses possess a specific mechanism to enhance the 

levels of these lipids on their outer membrane leaflet?  

• Does the pleomorphism of filovirus virions play a role in determining the preference for one 

internalization pathway over another? 

• Are there filovirus strain/species-dependent differences in the mechanism(s) of viral internalization? 

• What are the complete sets of host factors required for filovirus entry by clathrin or 

macropinocytosis-like pathways, and do they differ from the sets of host factors required by other 

viruses that use similar pathways?  

• Are there any overlapping/shared factors between the clathrin and macropinocytosis-like pathways 

that are involved in filovirus entry? What role (if any) does DYN-2 play in macropinocytic uptake 

of filoviruses? 

• Do the distinct endocytic pathways used by filoviruses converge upon similar downstream 

compartment(s) from which viral membrane fusion and cytoplasmic escape takes place? Which 

host pathways mediate delivery of virus particles to these downstream compartments? 

• In which intracellular compartment(s) does viral membrane fusion occur? 
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Figure 1. Schematic model of the filovirus entry mechanism with emphasis on clathrin and 

macropinocytic pathways for viral internalization. Distinct endocytic pathways and host 

factors implicated in filovirus entry are indicated. Please see the text for a more complete 

list of identified endocytic host factors and additional details. 
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